Extremos relativos
Si f es derivable en a, a es un extremo relativo o local si:
1. Si f'(a) = 0.
2. Si f''(a) ≠ 0.
Máximos relativos
Si f y f' son derivables en a, a es un máximo relativo si se cumple:
1. f'(a) = 0
2. f''(a) < 0
Mínimos relativos
Si f y f' son derivables en a, a es un mínimo relativo si se cumple:
1. f'(a) = 0
2. f''(a) > 0
Cálculo de máximos y mínimos
Para hallar los extremos locales seguiremos los siguientes pasos:
1. Hallamos la derivada primera y calculamos sus raíces.
2. Realizamos la 2ª derivada, y calculamos el signo que toman en ella las raíces de derivada primera y si:
f''(a) < 0 es un máximo relativo
f''(a) > 0 es un mínimo relativo
3. Calculamos la imagen (en la función) de los extremos relativos.
Ejemplo
Calcular los máximos y mínimos de:
f(x) = x3 − 3x + 2
f'(x) = 3x2 − 3 = 0
f''(x) = 6x
f''(−1) = −6 Máximo
f''(1) = 6 Mínimo
f(−1) = (−1)3 − 3(−1) + 2 = 4
f(1) = (1)3 − 3(1) + 2 = 0
Máximo(−1, 4) Mínimo(1, 0)
Si ya hemos estudiado el crecimiento y decrecimiento de una función habrá:
1. Un máximo en el punto, de la función, en la que ésta pasa de creciente a decreciente.
2. Un mínimo en el punto, de la función, en la que ésta pasa de decreciente a creciente.
Ejemplo
Hallar los máximos y mínimos de:





Tenemos un mínimo en x = 3

En x = 1 no hay un máximo porque x = 1 no pertenece al dominio de la función.
Si f y f' son derivables en a, a es:
Cóncava
Si f''(a) > 0
Convexa
Si f''(a) < 0
Intervalos de concavidad y convexidad
Para calcular los intervalos la concavidad y convexidad de una función seguiremos los siguientes pasos:
1. Hallamos la derivada segunda y calculamos sus raíces.
2. Formamos intervalos abiertos con los ceros (raíces) de la derivada segunda y los puntos de discontinuidad (si los hubiese).
3. Tomamos un valor de cada intervalo, y hallamos el signo que tiene en la derivada segunda.
Si f''(x) > 0 es cóncava.
Si f''(x) < 0 es convexa.
4. Escribimos los intervalos:
Ejemplo de intervalos de concavidad y convexidad












estoy feliz por tu logros, el nivel que esta es terrible. sigue adelante
ResponderEliminar